O professor Amadeo Peter Hiller --em um artigo intitulado "A matemática e o infinito" para o Suplemento Cultural do jornal "O Estado de São Paulo", datado de 16/04/1978, Ano II, Número 78, pp. 9-10-- apresenta, de modo didático e concisamente, os principais pontos propostos pelo projeto de Hilbert para a fundamentação da matemática, a saber:
- "Dividir o universo das proposições matemáticas em duas partes, as que se referem a objetos finitários 'reais' e as que se referem aos objetos infinitários 'ideais'."
- "Dado um raciocínio em que se demonstra uma proposição real a partir de hipóteses 'reais', mas em que no meio do arrazoado foram usadas proposições referentes a objetos 'ideais', mostrar que existe um raciocínio diverso, provando a mesma conclusão a partir das mesmas hipóteses, em que não aparecem proposições 'ideais'."
- "Fazer o anterior usando métodos matemáticos insofismáveis, i.e., finitários, e, também, provar a coerência do sistema todo usando os mesmos métodos."
Como observa o Prof. Jairo da Silva, em seu livro "Filosofia(s) da Matemática" de 2007, Editora da Unesp, páginas 196-197: "O segundo problema da lista [da famosa lista de problemas matemáticos proposta por Hilbert no II Congresso Internacional de Matemáticos, em Paris, ocorrido em 08 de agosto de 1900] pedia que se demonstrasse a 'compatibilidade dos axiomas aritméticos'. Isso já levanta algumas questões: 1) A que aritmética se referia Hilbert? 2) Pro que seriam necessárias demonstrações de consistência de teorias verdadeiras, como são, supõe-se, as aritméticas usuais dos números naturais, racionais e reais? (Haveria alguma razão para se duvidar que elas fossem, de fato, verdadeiras?) 3) Que ferramentas matemáticas seriam admissíveis nas demonstrações de consistência; ou seja, essas demonstrações deveriam ser levadas a cabo em que contexto matemático?"
Essas questões e outros aspectos do Programa de Hilbert serão discutidas na próxima postagem.
Comentários
Postar um comentário